Chapter 10 AP Problems

No calculator allowed.

1. Which of the following sequences is/are not bounded?

I.
$$a_n = \sqrt{2n} - \sqrt{n+1}$$

II.
$$b_n = 2 - \frac{5}{n}$$

III.
$$c_n = 2\sin(\pi n^2)$$

- A. I only
- B. I and II only
- C. II only
- D. II and III only
- E. I, II and III
- 2. Consider the series defined by $S_k = \sum_{n=1}^k \frac{1}{n^2 + 3n + 2}$.
 - a. Evaluate S_2 and S_3 .
 - b. Using the method of partial fractions, rewrite the expression $\frac{1}{n^2 + 3n + 2}$ as a sum/difference of two fractions.

c. Using the result of part (b), evaluate $S = \sum_{n=1}^{\infty} \frac{1}{n^2 + 3n + 2}$.

3. Which of the following series converges?

I.
$$\sum_{n=1}^{\infty} \frac{1}{n + 2\sqrt{n}}$$
II.
$$\sum_{n=2}^{\infty} \frac{n}{\sqrt{n^5 - 1}}$$

II.
$$\sum_{n=2}^{\infty} \frac{n}{\sqrt{n^5 - 1}}$$

III.
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$$

- A. I and II only
- B. II and III only
- C. I and III only
- D. II only
- E. III only

- 4. Which of the following series converges absolutely?

 - I. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{1 \cdot 1^n}$ II. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \cos(\pi n)}$
 - III. $\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n + .5^n}$
 - A. I only
 - B. II only
 - C. III only
 - D. I and II only
 - E. I and III only
- 5. For which of the following series is the Ratio Test inconclusive?

 - A. $\sum_{n=1}^{\infty} \frac{1}{n!}$ B. $\sum_{n=1}^{\infty} \frac{2^n}{n^2}$ C. $\sum_{n=1}^{\infty} \frac{3n}{2n^3 + 1}$

 - D. $\sum_{n=1}^{\infty} \frac{n!}{n^3}$ E. $\sum_{n=1}^{\infty} \frac{e^n}{(n-1)!}$

- **6.** Consider the function F defined by the power series $\sum_{n=0}^{\infty} (-1)^n \cdot x^n$.
 - a. Write the first three nonzero terms and the general term for $F(x^2)$.
 - b. Determine the interval of convergence of $F(x^2)$. Show the work that leads to your answer.
 - c. Given that $F(x^2) = \frac{1}{a + bx^c}$, find the values of a, b, and c.
 - d. Evaluate the improper integral $\int_0^\infty F(x^2) dx$. Show the work that leads to your conclusion.
- 7. In the Maclaurin series expansion of $f(x) = 8(x+4)^{3/2}$, what is the coefficient of the x^3 term?
 - A. -3
 - B. $-\frac{3}{8}$
 - C. $-\frac{1}{16}$
 - D. $\frac{3}{8}$
 - E. $\frac{3}{2}$